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ABTRACT: Wavelet analysis has been applied recently for analyzing data completely due to its potential. In this paper, 
we present aberrant observation detection and modeling approach based on wavelet analysis in Gaussian and Non-
Gaussian distributions. In order to characterize these distributions, a simulation of 1020 data set from normal 
distribution and contaminated with four normal data and later with four aberrant observations since wavelet analysis is 
dyadic. It was discovered that Normal (Gaussian) distribution with aberrant observations is the most efficient in 
detecting aberrant observations while Laplace (Non-Gaussian) distribution is the optimal distribution in modeling 
aberrant observations using the three distributions.     

Index Terms: Wavelets, Outliers, resolution, Residuals, Distributions, Gaussian, Discrete, Analysis 
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 1 INRODUCTION 
Aberrant observations (outliers) are defined as data 
points that are distinctly separate from the rest of the 
data. It is an observation that lies an abnormal 
distance from other values in a set of data. In 
statistics, an aberrant observation is an observation 
that is numerically distinct from the rest of the data. 
They can occur by chance in any distribution but are 
often indicative either of measurement error or that 
the population is heavy tailed. It can also indicate 
faulty data, erroneous procedures, etc. Section 2 
looks at the overview of wavelet analysis which uses 
both resolution and location in analyzing data 
completely. Section 3 describes how these outliers 
will be detected using these distributions which are 
the main goal of this paper. Section 4 discusses the 
analysis for these residuals while Section 5 interprets 
the results, conclusion and informed us of areas of 
further work.   
 
2 OVERVIEW OF WAVELET ANALYSIS 
Wavelet analysis is a statistical tool that can be used 
to extract information from any kind of data and are 

generally needed to analyze data fully at different 
resolution (scale) and location. 
 Discrete Wavelet Transform re - expresses a time 
series in terms of coefficients that are associated with 

a particular time and a particular dyadic scale 2 J . 
These coefficients are fully equivalent to the original 
series from its Discrete Wavelet Transform 
coefficients. 
The Discrete Wavelet Transform allows us to 
partition (decompose) the information in a time series 
into pieces that are associated with different scales 
and time. This decomposition is very close to the 
statistical technique known as the Analysis of 
variance (ANOVA), so DWT leads to a scaled – 
based ANOVA that is quite analogous to the 
frequency – based ANOVA provided by the power 
spectrum R. Todd Ogden (Dec., 1996).  
It effectively decorrelates a wide variety of time 
series that occurs quite commonly in physical 
applications. This property is the key to the use of the 
DWT in the statistical methodology  
L. Li and G.Lee (2003). 

 
 
Illustration 
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We begin with a set of discrete sequence of data 
𝑦 = 𝑦1,𝑦2 … … 𝑦𝑛 Where each of 𝑦𝑖 is a real number 
and 𝑖 is an integer ranging from 1to n. we assume that 
the length of our sequence n is a power of two, 𝑛 =
2𝐽 for some𝐽 ≥ 0. This should not be seen as a 
restriction as this can be modified for other n 
Abraham Maslow (Dec., 2008). We call the sequence 
Where 𝑛 = 2 dyadic one. The key information we 
extract is the “detail” in the sequence at different 
scale and different locations. By detail we mean the 
degree of the difference or variation between 
successive observations of the vector that is, 𝑑1 =
𝑦2 − 𝑦1 at the given scale and location.  
𝑑𝑘 = 𝑑𝑒𝑡𝑎𝑖𝑙 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑘    
 
𝑑𝑘 = (𝑦2𝑘 − 𝑦2𝑘−1)   …………(2.1) 
 
 𝐹𝑜𝑟 𝑘 = 1,2, … … … . ,𝑛 2 �  
e.g  
 𝑑1 = 𝑦2 − 𝑦1,𝑑2 = 𝑦4 − 𝑦3,𝑑3 = 𝑦6 − 𝑦5, 𝑒𝑡𝑐 
In equation (2.1) if the detail in 𝑦2𝑘 − 𝑦2𝑘−1 are 
similar, then the coefficient 𝑑𝑘 will be very small; if 
they are exactly the same, 𝑑𝑘is zero and if very large 
the coefficient will be very large. 𝑑𝑘 encodes the 
difference between successive pairs of observations 
in the original y vector. 𝑑𝑘 Is known as the finest 
scale detail Abraham Maslow (Dec., 1998) 

[𝑑𝑘]𝑘=1
𝑛
2�  Is not the conventional first difference vector 

since difference such as 𝑦3 − 𝑦2 are missing from 
{𝑑𝑘} location. 𝑑𝑘  only gives information about 2𝑘 
and its neighbor at the finest possible scale of detail 
G.P. Nason (2008) 
At Coarser Scale;   for coarser detail 
  𝐶𝑘 = 𝑦2𝑘 + 𝑦2𝑘−1………………… (2.2) 

 

  [𝐶𝑘]𝑘=1
𝑛
2�  is the sum of scaled average (scaled because 

it is not divided by 2). The information in [ 𝐶𝑘] is a 
roughing of that original 𝑦 vector. The operation that 
turns [𝑦𝑖] to [ 𝐶𝑘] is similar to the moving average 
smoothening operation except that the differencing 
does not overlap consecutive pairs. A. Dainotti, A. 
Pescape and G. Viorgio (2006) 
Each  𝐶𝑘 contains information originating from 𝑦2𝑘 
and 𝑦2𝑘−1 (adjacent observations) 
The original sequence 𝑦 consist of 2𝐽 observations 
{𝑑𝑘} consist of 𝑛 2� = 2𝐽−1 observations 

If 𝑗 = 𝐽 − 1 then 𝑑𝑘 can be written as 𝑑𝑗 ,𝑘 and the 
first level averages or smooth  𝐶𝑘 are renamed to 
becomes  𝐶𝑗−1,𝑘  written as 𝐶𝑗,𝑘  
To obtain the next coarsest detail, we repeat the 
operation of equation (3.1) to the finest level 
averages  𝐶𝑗−1,𝑘  as follows. 
 
2.1 SCALE/LEVEL TERMINOLOGY  
The scale in the quantity 2𝐽 where 𝑗 = 𝐽 − 1 and the 
level for the intergral quantity while k is the locations 
Larger 𝑗 (positive) corresponds to finer scale and 
smaller 𝑗 refers to the coarser scale in the contents of 
this work from equation 2.2  𝐶𝑗−1,𝑘 
 𝐶𝑗−1,2𝐿 =  𝐶𝑗−1,2𝐿 +  𝐶𝑗−1,2𝐿−1………..……. (2.3) 
 
For  𝑙 = 1,2, … … … … … . ,𝑛 4�  
From the original vector 𝑦 for 𝑙 = 1 
  𝐶𝑗−1,𝑙 = (𝑦4𝐿+2 + 𝑦4𝐿−3)− (𝑦4𝐿 + 𝑦4𝐿−1) 
       = (𝑦2 + 𝑦1)− (𝑦4 + 𝑦3) 
           = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 
 
 
This is a kind of moving average except that it is not 
divided by 1 4�  
 𝑑𝑗,𝑘  “detailed” coefficients are wavelet coefficients 
and  𝐶𝑗,𝑘  coefficients are known as father wavelet or 
scaling function coefficients. 

This general pyramid algorithm is called Haar 
wavelet transform. 
The inverse of the original sequence can be 
reconstructed exactly by using wavelet coefficients 
 𝑑𝑗,𝑘  and last  𝐶00 W. Lu and I. Traore (2005) 
 2.2 Sparsity  
The behavior of sparsity is a characteristic of 
wavelet: piece wise smooth functions have sparse 
representation G.P. Nason (2008). 
To conserve information we change equation (2.1) 
and (2.2) by introducing 𝛼 as follows 
𝑑𝑘 = 𝛼(𝑦2𝑘 −
𝑦2𝑘−1)…………………………………. (2.4) 
 
 𝐶𝑘 = α (𝑦2𝑘 +
𝑦2𝑘−1)…………………………………… (2.5) 
The inputs are (𝑦2𝑘,𝑦2𝑘−1) transformed into the 
output (𝑑𝑘 ,  𝐶𝑘) and the (squared) norm of the output.  
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                              62 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org 

�
=+ 22

kk cd 2α (𝑦2𝑘2 + 2𝑦2𝑘𝑦2𝑘−1 + 𝑦2𝑘−1)

+∝2 (𝑦2𝑘 + 2𝑦2𝑘𝑦2𝑘−1 + 𝑦2𝑘−1)
 

  = 2 2α (𝑦2𝑘2 + 𝑦2𝑘−12 ) ……..(2.6) 
 
Where 𝑦2𝑘2 + 𝑦2𝑘−12 the squared norm of the input 
coefficients hence is to wish the norm of output 
equals norms of input 
 

Let2 2α  =1   therefore 

α � = 2−1 2�   
Then the discrete wavelet coefficients is  
𝑑𝑘 = (𝑦2𝑘 − 𝑦2𝑘−1)

√2�  …………………… (2.7) 

Equation 2.7 can be rewritten as  
𝑑𝑘 = 𝑔0𝑦2𝑘 +
𝑔1𝑦2𝑘−1……………………………………… (2.8) 
 
Where 𝑔0 = 2−1 2�   and 𝑔1 = −2−1 2�  
 
In general  

𝑑𝑘 = �𝑔𝐿𝑦2𝑘−1

∞

𝐿=∞

… … … . . … … … … … … (2.9) 

 

Where   𝑔𝐿 = �
2−1 2�  𝑓𝑜𝑟 𝐿 = 0
2−1 2�  𝑓𝑜𝑟 𝐿 = 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
……. (2.10) 

 
Equation 2.9 is similar to a filtering operation with 
coefficient of {𝑔𝐿}𝑙=∞∞ [10,11] 
That is the input sequence can be thought to possess a 
norm as defined by 
   
 

‖𝑦‖2 = �𝑦𝑖2
𝑛

𝐿=1

 

Another interesting component of the filter object is 
the H component which is equal to the vector 

operation �2−1 2� , 2−1 2� � which is involved in the 
filtering operation analogous to that equation 3.12 
that produce 𝐶𝑘 as  
 
 

𝐶𝑘 = �ℎ𝐿𝑦2𝑘−𝑙

∞

𝐿=∞

… … … … … … … … … . (2.11) 

 
ℎ𝐿

= �
2−1 2�  𝑓𝑜𝑟 𝐿 = 0
2−1 2�  𝑓𝑜𝑟 𝐿 = 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
… … … … … … … (2.12) 

 
 
2.3 MATRX REPRESENTATION 
Like the orthonormal discrete Fourier transform, the 
discrete wavelets transform (DWT) of 𝑋𝑡 is an 
orthonormal transform [5]. Let [𝑊𝑛;𝑛 = 0 … … . .𝑁 −
1] be the DWT coefficients then, we can write 
𝑊 = 𝑤𝑛  where 𝑊  is a column vector of length 
𝑁 = 22 whose  𝑛𝑡ℎ  DWT and satisfying 𝑤𝑇𝑤 = 𝐼𝑁  
orthornormality implies that   𝑋 = 𝑤𝑇𝑤   and   
‖𝑊‖2 = ‖𝑋‖2. Hence 𝑊𝑛

2 represents the 
contribution to the energy attributable to the DWT 
coefficient with index  𝑛.  
Whereas ODFT coefficients are associated with 
frequencies the 𝑛𝑡ℎ wavelet coefficient 𝑊𝑛 is 
associated with a particular scale and with a 
particular set of times H. Nayyar and Ali. A. 
Ghorbani (2006). 
Explicitly, the rows of this mature for n=0, 8, 12, 14, 
and 15 are 
 

𝑤0𝑇 = �−1
√2� , 1

√2� , 0 … … … … … .0���������
14 𝑧𝑒𝑟𝑜

�     

 

𝑤8𝑇 = �−1
2� ,−1

2� , 1
2� , 1

2� , 0 … … … .0�������
12 𝑧𝑒𝑟𝑜

�  

 
 
 𝑤12𝑇 =

�−1
√8� , … … … … . . ,−1

√8� , 1
√8� … … … 1

√8� , 0 … … . . .0�������
8 𝑧𝑒𝑟𝑜

� 

 
 

  𝑤14𝑇 = �−1
√4� , … … . . ,−1

√4� , 1
√4� … … … 1

√4� � 

 

   𝑤15𝑇 = �1
√4� … … … 1

√4� � 

The remaining eleven rows are shifted version of the 
above;  
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 𝑤1 = 𝑇2𝑤0,   𝑤2 = 𝑇4𝑤0 … … 𝑤7 = 𝑇14𝑤0  
 
 
 𝑤9 = 𝑇4𝑤8 ,        𝑤10 = 𝑇8𝑤8         𝑤11 = 𝑇12𝑤8 
 
 𝑤13 = 𝑇8𝑤12 
 
Let us now, define exactly what the notation of scale 
means for a positive integer  𝑘  let   
 
𝑋�𝑡(𝑘)

=
1
𝑘
�𝑋𝑡−1 … … … … … … … … … … … … … … . … … … (2.13)
𝑘−1

𝑙=0

 

 
 

Donald B. Percival, Andrew T. Walden (2000) 
 
 
 
3 OUTLIER DETECTION 
In this section, we assume that the higher the value of 
the residuals, the more anomalous the data Wei Lu, 
Mahbod Tavallaee and Ali A. (2008). As a result, in 
order to identify these outliers the residuals of these 

distributions at different resolutions will be obtained 
and compared to identify their rate of detection J. 
McHugh (2000) and P. Barford, J. Kline, D. Plonka 
and A. Ron (2002). 
 
4 ANALYSIS OF RESIDUALS 
The purpose for analyzing the residuals of these 
distributions is to support our assumption in section 
(3). The data analyzed were simulated from Normal 
distribution involving 1020 data set. Since Wavelet 
analysis is dyadic, we introduced four data within the 
maximum and minimum values in the data set and 
analyzed it as Normal distribution without aberrant 
observations (NO) at different resolution (j). These 
four values were removed and four aberrant 
observations were now introduced and further 
analysis using Normal (NW), Laplace and Cauchy 
distributions were used to analyze the contaminated 
data set at different resolutions. The mean and 
standard deviation (residual) were obtained at 
different resolutions using the Maximum Likelihood 
estimate which of course, is more efficient than the 
conventional method. Since Wavelet analysis is 
dyadic, the data were analyze at different band size 
(1024, 512, 256, 128, 64, 32) and at different 
resolutions (j= 10 9,8,7,6 and 5) respectively.  

 
 
Table 1: Mean and Standard Deviations of the Distributions 
 
Resolutio
n level j 

Band 
Size 

      NO     NW LAPLACE CAUCHY 
Mean StdDev Mean StdDe

v 
Mean StdDev Mean StdDev 

      10  1024 0.04545           0.9869 0.0727 1.4858 0.0711 0.8613 0.0671 0.6255 

        9   512 -0.0581 0.9470 0.0160 1.5503 0.1752 0.8681 0.1701 0.6326 

        8   256 0.0573 0.9738 0.0547 1.5059 0.0012 0.8975 0.0114 0.6599 

        7   128 -0.2162 0.9549 -0.0163 1.5041 0.2338 0.9059 0.2465 0.6198 

        6     64 -0.0989 0.6676 -0.1550 1.5739 -0.1842 0.8498 -0.1572 0.5021 

        5     32 -0.1220 0.6514 -0.2535 1.4314 -0.0332 0.8505 -0.0036 0.4851 

 
 

 
Key 
NO: Normal distribution without aberrant 
observations 
NW: Normal distribution with aberrant observations   
 
5 EXPERIMENTAL EVALUATIONS 
From the above, the mean and standard deviations for 
the coefficients of Normal distribution without 
outliers(NO) at different resolutions(j) or band size 
with approximately  mean = 0 and standard deviation 
= 1 confirms the absence of outliers. Also for the 
other three distributions (Normal with outliers(NW), 
Laplace and Cauchy), it was observed that the 

Laplace distribution has a standard deviation closer to 
that of Normal without outliers, followed by the 
Cauchy distribution and finally the Normal 
distribution with aberrant observations(NW). 
Since Normal (Gaussian) distribution with aberrant 
observations has the highest standard deviation at all 
resolutions from Normal, we conclude that among 
the three distributions, it is the most efficient in 
detecting aberrant observations. While on the other 
hand, Laplace (Non-Gaussian) distribution whose 
standard deviations at different resolution is closest to 
the Normal distribution without aberrant observations 
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is regarded as the optimal  distributions for  modeling 
aberrant  observations among these distributions. 
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